How do you simplify #[\frac { 16\times 45\times 10^ { 3} } { \pi \times 90\times 10^ { 6} } ]#?

1 Answer
Dec 10, 2017

The final result is #1/(125pi)#.

Explanation:

#frac { 16\times 45\times 10^ { 3} } { \pi \times 90\times 10^ { 6} } #

Start with the two clearest moves: #45/90# and #10^3/10^6#:

#frac { 16 } { \pi \times 2\times 10^ { 3} } #

Now rewrite #16=2^4#

#frac { 2^4 } { \pi \times 2\times 10^ { 3} } #

We can rewrite #10^3# as #(2*5)^3=2^3*5^3#

#frac { 2^4 } { \pi \times 2\times 2^3 times 5^3 } #

Notice that #2^4# appears in the numerator and denominator since #2 times 2^3 = 2^4# and simplify that:

#frac { 1} { \pi times 5^3 } #

So the final result is #1/(125pi)#