How do you simplify #\frac { 24a ^ { - 3} b ^ { 4} c ^ { - 7} } { 6a ^ { 6} b ^ { - 1} }#?

1 Answer
Apr 19, 2017

See the entire solution process below:

Explanation:

First, rewrite this expression as:

#(24/6)(a^-3/a^6)(b^4/b^-1)c^-7 = 4(a^-3/a^6)(b^4/b^-1)c^-7#

Next, use these two rules of exponents to simplify the #a# and #b# terms:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))# and #x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#4(a^color(red)(-3)/a^color(blue)(6))(b^color(red)(4)/b^color(blue)(-1))c^-7 = 4(1/a^(color(blue)(6)-color(red)(-3)))(b^(color(red)(4)-color(blue)(-1)))c^-7 =#

#4(1/a^(color(blue)(6)+color(red)(3)))(b^(color(red)(4)+color(blue)(1)))c^-7 = 4(1/a^9)(b^5)c^-7#

Now, use this rule of exponents to eliminate the negative exponent on the #c# term:

#x^color(red)(a) = 1/x^color(red)(-a)#

#4(1/a^9)(b^5)c^color(red)(-7) = 4(1/a^9)(b^5)1/c^color(red)(- -7) = 4(1/a^9)(b^5)1/c^color(red)(7)#

We can now multiply the individual terms:

#(4b^5)/(a^9c^7)#