How do you simplify #\frac { ( - 2x y ^ { - 3} ) ^ { - 5} } { ( x y ^ { - 3} ) ^ { - 3} }#?

1 Answer
Apr 17, 2017

#=-y^6/(32x^2)#

Explanation:

There are several laws of indices which can be applied.
One law is not better or stronger than another.

Use the ones you find easiest to recognise and apply.

I like to get get rid of any negative indices first, then simplify.

Recall: #x^color(red)(-m) = 1/x^color(red)(m) " and " 1/y^color(blue)(-n) = y^color(blue)(n)#

#((-2xy^-3)^color(red)(-5))/((xy^-3)^color(blue)(-3)) = ((xy^-3)^color(blue)(3))/((-2xy^-3)^color(red)(5))#

Recall: #(x^m)^n = x^(mxxn)" "# (removes brackets)

#((xy^-3)^color(blue)(3))/((-2xy^-3)^color(red)(5)) =(x^3y^-9)/((-2)^5x^5y^-15)#

#= (x^3y^15)/(-32x^5y^9)" "larr# positive indices

#=-y^6/(32x^2)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You might like to get rid of the brackets first.

#((-2xy^-3)^color(red)(-5))/((xy^-3)^color(blue)(-3)) = ((-2)^color(red)(-5)x^color(red)(-5)y^color(red)(15))/(x^color(blue)(-3)y^color(blue)(9))#

Then subtract the indices of like bases:

#=(-32^-1)x^(-5+3))y^6#

and deal with the negative indices last:

#= y^6/(-32x^2)#