How do you simplify #\frac { 2x + y } { - 4x + 3y } \times \frac { 24x ^ { 2} - 22x y + 3y ^ { 2} } { - 12x ^ { 2} - 4x y + y ^ { 2} }#?

1 Answer
Nov 22, 2017

This is what I got:

Explanation:

#(2x+y)/(-4x+3y) * (24x^2-22xy+3y^2)/(-12x^2-4xy+y^2)#

First, let's put everything onto one fraction:
#((2x+y)(24x^2-22xy+3y^2))/((-4x+3y)(-12x^2-4xy+y^2))#


Now let's just look at the numerator: #(2x+y)(24x^2-22xy+3y^2)#
We use the distributive property to multiply all of this stuff out:
#2x * 24x^2 = 48x^3#
#2x * -22xy = -44x^2y#
#2x * 3y^2 = 6xy^2#

#y * 24x^2 = 24x^2y#
#y * -22xy = -22xy^2#
#y * 3y^2 = 3y^3#

Let's combine them all together:
#48x^3 - 44x^2y + 6xy^2 + 24x^2y - 22xy^2 + 3y^3#

As you can see, we have a couple things in common here.
Two of these contain #x^2y -> -44x^2y# and #24x^2y#
#-44x^2y + 24x^2y = -20x^2y#

Also #6xy^2 -22xy^2 = -16xy^2#

Now our simplified numerator is #48x^3 - 20x^2y - 16xy^2 + 3y^3#


Let's look at the denominator: #(-4x+3y)(-12x^2-4xy+y^2)#

Again we use the distributive property to simplify this:
#-4x * -12x^2 = 48x^3#
#-4x * -4xy = 16x^2y#
#-4x * y^2 = -4xy^2#

#3y * -12x^2 = -36x^2y#
#3y * -4xy = -12xy^2#
# 3y * y^2 = 3y^3#

Let's combine them all together:
#48x^3 + 16x^2y - 4xy^2 - 36x^2y - 12xy^2 + 3y^3#

#16x^2y# and #-36x^2y# are in common, so:
#16x^2y - 36x^2y = -20x^2y#

#-4xy^2# and #-12xy^2# are in common, so:
#-4xy^2 - 12xy^2 = -16xy^2#

Now our simplified denominator is #48x^3 -20x^2y - 16xy^2 + 3y^3#


When we put our numerator and denominator together, we get...
#(48x^3 - 20x^2y - 16xy^2 + 3y^3)/(48x^3 -20x^2y - 16xy^2 + 3y^3)#