How do you simplify #\frac { 2y } { 2x ^ { - 1} y ^ { - 1} }#?

1 Answer
Nov 23, 2016

#(2y)/(2x^(-1)y^(-1)) = xy^2#

Explanation:

Consider these examples:

#1/x " is another way of writing " x^(-1) #

#x^(-1)" " ->" " x^(-1)/1 " is another way of writing " 1/x#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Using the above approach

Splitting up the given expression so you can see more of what is going on. So we have:

Given:#" "(2y)/(2x^(-1)y^(-1))#

#color(saddlebrown)(2xx1/2)color(green)(xxy)color(blue)(xx1/x^(-1))color(magenta)(xx1/y^(-1))#

#color(saddlebrown)(2/2)color(green)(xxy)color(blue)(xx1/x^(-1))color(magenta)(xx1/y^(-1))#

Note that #2/2=1# so this gives:

#color(saddlebrown)(1) color(green)(xxy)color(blue)(xx x)color(magenta)(xxy)#

#xy^2#