First, reduce the coefficients to:
#((z^6w^4)/(4z^5w^3))^3#
Next, use this rule for exponents to simplify the variables within the parenthesis:
#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#
#((z^color(red)(6)w^color(red)(4))/(4z^color(blue)(5)w^color(blue)(3)))^3 =>#
#((z^(color(red)(6)-color(blue)(5))w^(color(red)(4)-color(blue)(3)))/4)^3 =>#
#((z^color(red)(1)w^color(red)(1))/4)^3#
Then, use this rule of exponents to rewrite the denominator as:
#a = a^color(red)(1)#
#((z^color(red)(1)w^color(red)(1))/4^color(red)(1))^3#
Now, use this rule of exponents to eliminate the outer exponent:
#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#
#(z^(color(red)(1)xxcolor(blue)(3))w^(color(red)(1)xxcolor(blue)(3)))/4^(color(red)(1)xxcolor(blue)(3) =>#
#(z^3w^3)/4^3 =>#
#(z^3w^3)/64#