How do you simplify #(\frac { - 3x ^ { 2} y } { 2x y ^ { - 2} } ) ^ { - 2} \times ( \frac { 9x ^ { 2} } { 4y ^ { 4} } )#?

1 Answer
Jul 26, 2017

See a solution process below:

Explanation:

First, use these rules of exponents to simplify the term on the left:

#a = a^color(red)(1)# and #(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#((-3x^2y)/(2xy^-2))^-2 xx ((9x^2)/(4y^4)) =>#

#((-3^color(red)(1)x^color(red)(2)y^color(red)(1))/(2^color(red)(1)x^color(red)(1)y^color(red)(-2)))^color(blue)(-2) xx ((9x^2)/(4y^4)) =>#

#((-3^(color(red)(1)xxcolor(blue)(-2))x^(color(red)(2)xxcolor(blue)(-2))y^(color(red)(1)xxcolor(blue)(-2)))/(2^(color(red)(1)xxcolor(blue)(-2))x^(color(red)(1)xxcolor(blue)(-2))y^(color(red)(-2)xxcolor(blue)(-2)))) xx ((9x^2)/(4y^4)) =>#

#((-3^-2x^-4y^-2)/(2^-2x^-2y^4)) xx ((9x^2)/(4y^4))#

Next, rewrite the expression as:

#(-(3^-2 xx 9)/(2^-2 xx 4))((x^-4 xx x^2)/x^-2)(y^-2/(y^4 xx y^4))#

Next, use these rules of exponents to simplify the constants:

#x^color(red)(a) = 1/x^color(red)(-a)# and #1/x^color(blue)(a) = x^color(blue)(-a)#

#(-(3^color(red)(-2) xx 9)/(2^color(blue)(-2) xx 4))((x^-4 xx x^2)/x^-2)(y^-2/(y^4 xx y^4)) =>#

#(-(2^color(blue)(- -2) xx 9)/(3^color(red)(- -2) xx 4))((x^-4 xx x^2)/x^-2)(y^-2/(y^4 xx y^4)) =>#

#(-(2^color(blue)(2) xx 9)/(3^color(red)(2) xx 4))((x^-4 xx x^2)/x^-2)(y^-2/(y^4 xx y^4)) =>#

#(-(4 xx 9)/(9 xx 4))((x^-4 xx x^2)/x^-2)(y^-2/(y^4 xx y^4)) =>#

#(-36/36)((x^-4 xx x^2)/x^-2)(y^-2/(y^4 xx y^4)) =>#

#-1((x^-4 xx x^2)/x^-2)(y^-2/(y^4 xx y^4)) =>#

#-((x^-4 xx x^2)/x^-2)(y^-2/(y^4 xx y^4))#

Then, use this rule of exponents to simplify the numerator of the #x# term:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#-((x^color(red)(-4) xx x^color(blue)(2))/x^-2)(y^-2/(y^4 xx y^4)) =>#

#-(x^(color(red)(-4)+color(blue)(2))/x^-2)(y^-2/(y^4 xx y^4)) =>#

#-(x^-2/x^-2)(y^-2/(y^4 xx y^4)) =>#

#-(1)(y^-2/(y^4 xx y^4)) =>#

#-(y^-2/(y^4 xx y^4))#

Now, use these rules of exponents to simplify the #y# terms:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))# and #x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#-(y^-2/(y^color(red)(4) xx y^color(blue)(4))) =>#

#-(y^-2/y^(color(red)(4) + color(blue)(4))) =>#

#-(y^color(red)(-2)/(y^color(blue)(8))) =>#

#-(1/y^(color(blue)(8)-color(red)(-2))) =>#

#-(1/y^(color(blue)(8)+color(red)(2))) =>#

#-1/y^10#