How do you simplify #\frac { - 46a ^ { 5} b ^ { 12} } { - 2a b ^ { 6} }#?

1 Answer
Jun 18, 2017

See a solution process below:

Explanation:

First, rewrite this expression as:

#((-46)/(-2))(a^5/a)(b^12/b^6) => 23(a^5/a)(b^12/b^6)#

Next, use these two rules of exponents to simplify the #a# and #b# terms:

#a = a^color(red)(1)# and #x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#23(a^5/a)(b^12/b^6) => 23(a^color(red)(5)/a^color(blue)(1))(b^color(red)(12)/b^color(blue)(6)) =>#

#23a^(color(red)(5)-color(blue)(1))b^(color(red)(12)-color(blue)(6)) =>#

#23a^4b^6#