First, rewrite the expression as:
#(4 * 2)/(3 * 2)(1/(m^4 * m^3))((n^4 * n)/(n^2 * n^3)) =>#
#(4 * color(red)(cancel(color(black)(2))))/(3 * color(red)(cancel(color(black)(2))))(1/(m^4 * m^3))((n^4 * n)/(n^2 * n^3)) =>#
#4/3(1/(m^4 * m^3))((n^4 * n)/(n^2 * n^3))#
Next, use this rule of exponents to rewrite the #n# terms:
#a = a^color(blue)(1)#
#4/3(1/(m^4 * m^3))((n^4 * n^color(blue)(1))/(n^2 * n^3))#
Now, use this rule of exponents to simplify each of the numerators and denominators:
#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#
#4/3(1/(m^color(red)(4) * m^color(blue)(3)))((n^color(red)(4) * n^color(blue)(1))/(n^color(red)(2) * n^color(blue)(3))) =>#
#4/3(1/(m^(color(red)(4)+color(blue)(3))))((n^(color(red)(4)+color(blue)(1)))/(n^(color(red)(2)+color(blue)(3)))) =>#
#4/3(1/m^7)(n^5/n^5) =>#
#4/3(1/m^7)(color(red)(cancel(color(black)(n^5)))/color(red)(cancel(color(black)(n^5)))) =>#
#4/(3m^7)#