How do you simplify #\frac { 5} { 4x ^ { 4} - 20x ^ { 3} } - \frac { 8} { 7x - 6}#?

2 Answers
Jun 17, 2018

#(-32x^4+160x^3+35x-30)/(4x^3(x-5)(7x-6)x^3#

Explanation:

Writing you first summand in the form

#(5(7x-6))/(4x^3(x-5)(7x-6))#
and the second

#(8*4*x^3*(x-5))/(4x^3(x-5)(7x-6))#
Now we can add both.

#(35x-30-32x^4+160x^3)/(4x^3(x-5)(7x-6))#

Jun 17, 2018

Cross Multiply,

Explanation:

#5/(4x^4-20x^3)-8/(7x-6)# is #(5(7x-6)-8(4x^4-20x^3))/((4x^4-20x^3)*(7x-6))#
which is #(35x-30-32x^4+160x^3)/(28x^5-28x^4-140x^4+120x^3)#
and simplifies to
#(35x-30-32x^4+160x^3)/(28x^5-168x^4+120x^3)#

There is no possible further factorization,