How do you simplify #\frac { 5} { n } - \frac { 6} { n ^ { 3} - 2n ^ { 2} } = \frac { n ^ { 2} + 5n - 6} { n ^ { 3} - 2n ^ { 2} }#?

1 Answer
Dec 17, 2016

#n=15/4#

Explanation:

Given
#color(white)("XXX")5/n-6/(n^3-2n^2)=(n^2+5n-6)/(n^3-2n^2)#

Multiplying everything on both sides by #(n^3-2n^2)=n(n^2-2n)#
#color(white)("XXX")5(n^2-2n)cancel(-6)=n^2+5ncancel(-6)#

#color(white)("XXX")5n^2-10n=n^2+5n#

#color(white)("XXX")4n^2-15n=0#

#color(white)("XXX")n(4n-15)=0#

#color(white)("XXX")n=0 or n=15/4#

Since the given equation is meaningless is #n=0# (attempting to divide by #0#) we can treat that result as extraneous.