How do you simplify #\frac { 56x ^ { 4} y ^ { 3} } { 8x y ^ { 7} }#?

2 Answers
Jun 9, 2017

See a solution process below:

Explanation:

First, rewrite this expression as:

#56/8(x^4/x)(y^3/y^7) => 7(x^4/x)(y^3/y^7)#

Next, uses these rules of exponents to simplify the #x# terms:

#a = a^color(blue)(1)# and #x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#7(x^color(red)(4)/x^color(blue)(1))(y^3/y^7) => 7x^(color(red)(4)-color(blue)(1))(y^3/y^7) => 7x^3(y^3/y^7)#

Now, use this rule of exponents to simplify the #y# terms:

#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#7x^3(y^color(red)(3)/y^color(blue)(7)) => 7x^3(1/y^(color(blue)(7)-color(red)(3))) => 7x^3(1/y^4) =>#

#(7x^3)/y^4#

Jun 9, 2017

#(56x^4y^3)/(8xy^7)=(7x^3)/y^4#

Explanation:

It is easier to understand the simplification of this expression by simplifying the terms individually:

Then: #56/8=7to# is normal division

#x^4/x=x^3to# division of exponents means subtract bottom from top

#y^3/y^7=1/y^4to# division of exponents again means subtract, b from t

And a negative exponent value means you are dividing it into #1#.

Re-assembling the expression: #(56x^4y^3)/(8xy^7)=(7x^3)/y^4#