How do you simplify #\frac { 5c ^ { 2} } { 15a c }#?

1 Answer
Jun 4, 2017

See a solution process below:

Explanation:

First, factor the constants as:

#(5c^2)/(15ac) = (5c^2)/((5 xx 3)ac) = (color(red)(cancel(color(black)(5)))c^2)/((color(red)(cancel(color(black)(5))) xx 3)ac) =#

#c^2/(3ac)#

Now, use these rules for exponents to simplify the #x# terms:

#a = a^color(blue)(1)# and #x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))# and #a^color(red)(1) = a#

#c^color(red)(2)/(3ac^color(blue)(1)) = c^(color(red)(2)-color(blue)(1))/(3a) = c^(color(red)(1))/(3a) = c/(3a)#