First, use this rule of exponents to simplify the term with in the parenthesis:
#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#
#((6x^color(red)(6)y^color(red)(2)z^color(red)(5))/(3x^color(blue)(2)y^color(blue)(1)z^color(blue)(0)))^3 => (2x^(color(red)(6)-color(blue)(2))y^(color(red)(2)-color(blue)(1))z^(color(red)(5)-color(blue)(0)))^3 =>#
#(2^1x^4y^1z^5)^3#
Now, use this rule of exponents to complete the simplification:
#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#
#(2^color(red)(1)x^color(red)(4)y^color(red)(1)z^color(red)(5))^color(blue)(3) => 2^(color(red)(1)xxcolor(blue)(3))x^(color(red)(4)xxcolor(blue)(3))y^(color(red)(1)xxcolor(blue)(3))z^(color(red)(5)xxcolor(blue)(3)) => 2^3x^12y^3z^15 =>#
#8x^12y^3z^15#