First, rewrite the expression as:
#(-9)/-6(a^9/a)b(c^2/c^12)(d^7/d^7) =>#
#(-3 xx 3)/(-3 xx 2)(a^9/a)b(c^2/c^12)(color(red)(cancel(color(black)(d^7)))/color(red)(cancel(color(black)(d^7)))) =>#
#(color(red)(cancel(color(black)(-3))) xx 3)/(color(red)(cancel(color(black)(-3))) xx 2)(a^9/a)b(c^2/c^12)1 =>#
#3/2(a^9/a)b(c^2/c^12)#
Next, use these rules of exponents to simplify the #a# terms:
#a = a^color(blue)(1)# and #x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#
#3/2(a^color(red)(9)/a^color(blue)(1))b(c^2/c^12) =>#
#3/2a^(color(red)(9)-color(blue)(1))b(c^2/c^12) =>#
#3/2a^8b(c^2/c^12) =>#
#(3a^8b)/2(c^2/c^12)#
Now, use this rule of exponents to simplify the #c# term:
#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#
#(3a^8b)/2(c^color(red)(2)/c^color(blue)(12)) =>#
#(3a^8b)/2(1/c^(color(blue)(12)-color(red)(2))) =>#
#(3a^8b)/2(1/c^10) =>#
#(3a^8b)/(2c^10)#