How do you simplify #\frac { ( a + 5b ) ^ { 5} } { ( a + 5b ) ^ { 2} } #?

1 Answer

#(a+5b)^5/(a+5b)^2=(a+5b)^3#

Explanation:

Let's first say that #x=(a+5b)#, so I can write:

#(a+5b)^5/(a+5b)^2=x^5/x^2#

I can use the rule #x^a/x^b=x^(a-b)# to then write:

#x^5/x^2=x^(5-2)=x^3#

Let's now substitute the original expression back in for #x#:

#x^3=(a+5b)^3#