How do you simplify #\frac { a ^ { 7} \cdot a ^ { 6} } { a ^ { - 6} }#?

2 Answers
Mar 8, 2017

#a^19#

Explanation:

We know #a^-1 = 1/a. Then 1/a^-1 = a^1#

Hence #[a^7. a^6]/a^-6 = a^7. a^6. a^6 #

#rArr a^[7+6+6] = a^19# [as the base are same]

Mar 8, 2017

See the entire simplification process below:

Explanation:

First, combine the terms in the numerator using this rule of exponents:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#(a^color(red)(7) * a^color(blue)(6))/a^-6 = a^(color(red)(7) + color(blue)(6))/a^-6 = a^13/a^-6#

Now, use this rule of exponents to combine the numerator and denominator:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#a^color(red)(13)/a^color(blue)(-6) = a^(color(red)(13)-color(blue)(-6)) = a^(color(red)(13)+color(blue)(6)) = a^19#