How do you simplify #\frac { c ^ { - 1} } { c ^ { 0} \cdot c ^ { 0} \cdot c ^ { 0} }#?

1 Answer
Mar 14, 2017

See the entire simplification process below:

Explanation:

First use this rule of exponents to simplify the denominator: #a^color(red)(0) = 1#

#c^-1/(c^color(red)(0) * c^color(red)(0) * c^color(red)(0)) = c^-1/(1 * 1 * 1) = c^-1/1 = c^-1#

Next, use these two rules to complete the simplification:

#x^color(red)(a) = 1/x^color(red)(-a)# and #a^color(red)(1) = a#

#c^color(red)(-1) = 1/c^color(red)(- -1) = 1/c^color(red)(1) = 1/c#