How do you simplify #\frac { \frac { 1} { a } - \frac { 1} { b } } { \frac { a } { b } - \frac { b } { a } }#?

1 Answer
Oct 22, 2016

#(1/a-1/b)/(a/b-b/a) = -1/(a+b)#

Explanation:

Multiply both numerator and denominator by #ab#, then simplify using the difference of squares identity:

#a^2-b^2 = (a-b)(a+b)#

as follows:

#(1/a-1/b)/(a/b-b/a) = (1/a-1/b)/(a/b-b/a)*(ab)/(ab)#

#color(white)((1/a-1/b)/(a/b-b/a)) = (b-a)/(a^2-b^2)#

#color(white)((1/a-1/b)/(a/b-b/a)) = (-color(red)(cancel(color(black)((a-b)))))/(color(red)(cancel(color(black)((a-b))))(a+b))#

#color(white)((1/a-1/b)/(a/b-b/a)) = -1/(a+b)#

(provided #a!=b#)