How do you simplify #\frac { \frac { 6} { x - 5} + x } { \frac { 3} { x - 5} + 1}#?

1 Answer
Jul 31, 2017

#(6/(x-5)+x)/(3/(x-5)+1) = color(blue)(x-3#

Explanation:

First, let's move the denominator into a common denominator (#x-5#):

#(6/(x-5)+x)/((3+x-5)/(x-5))#

#(6/(x-5)+x)/((x-2)/(x-5))#

Now get the numerator into a common denominator (also #x-5#):

#((6+x^2-5x)/(x-5))/((x-2)/(x-5))#

We can now eliminate both denominators:

#((6+x^2-5x)/(cancel(x-5)))/((x-2)/(cancel(x-5)))#

#(x^2-5x+6)/(x-2)#

Factoring the numerator:

#((x-3)(cancel(x-2)))/(cancel(x-2))#

#color(blue)(ul(x-3#