How do you simplify #\frac { \frac { x } { 2} - \frac { 2} { x } } { \frac { x - 3} { 10} - \frac { 1} { x } }#?

1 Answer
Nov 30, 2016

#((5x - 10 ))/((x - 5))#

Explanation:

First, we need to get each fraction over the same denominator so we can work with them. In this case #10x# will be a common denominator. So we must multiple each fraction by the appropriate form of #1# to have a denominator of #10x#:

#((5x)/(5x) * x/2 - 10/10 * 2/x)/(x/x * (x-3)/10 - 10/10 * 1/x) ->#

#((5x^2)/(10x) - 20/(10x))/((x^2-3x)/(10x) - 10/(10x)) ->#

#((5x^2 - 20)/(10x))/((x^2-3x - 10)/(10x)) ->#

Now, we can use the rules for dividing fractions to get:

#(10x * (5x^2 - 20))/(10x * (x^2-3x - 10)) ->#

#(cancel(10x) * (5x^2 - 20))/(cancel(10x) * (x^2-3x - 10)) ->#

#(5x^2 - 20)/(x^2-3x - 10) ->#

Factoring the numerator and denominator gives:

#((5x - 10 )(x + 2 ))/((x - 5)(x + 2))#

#((5x - 10 )cancel((x + 2)))/((x - 5)cancel((x + 2)))#

#((5x - 10 ))/((x - 5))#