How do you simplify #\frac{-m^{-2}n^{-4}}{(2m^{-2}n^{4}p^{-3})^{0}\cdot 2m^{2}n^{-4}p^{-1}}#?

1 Answer
Jul 1, 2018

see a solution process below:

Explanation:

First, use this rule of exponents to simplify the denominator of the fraction:

#a^color(red)(0) = 1#

#(-m^-2n^-4)/((2m^-2n^4p^-3)^color(red)(0) * 2m^2n^-4p^-1) =>#

#(-m^-2n^-4)/(1 * 2m^2n^-4p^-1) =>#

#(-m^-2n^-4)/(2m^2n^-4p^-1)#

Next, rewrite the expression as:

#(-1m^-2n^-4)/(2m^2n^-4p^-1) =>#

#-1/2(m^-2/m^2)(n^-4/n^-4)(1/p^-1) =>#

#-1/2(m^-2/m^2)(color(red)(cancel(color(black)(n^-4)))/color(red)(cancel(color(black)(n^-4))))(1/p^-1) =>#

#-1/2(m^-2/m^2) * 1 * (1/p^-1) =>#

#-1/2(m^-2/m^2)(1/p^-1)#

Next, use this rule for exponents to simplify the #m# terms:

#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#-1/2(m^color(red)(-2)/m^color(blue)(2))(1/p^-1) =>#

#-1/2(1/m^(color(blue)(2)-color(red)(-2)))(1/p^-1) =>#

#-1/2(1/m^(color(blue)(2)+color(red)(2)))(1/p^-1) =>#

#-1/2(1/m^4)(1/p^-1) =>#

#-1/(2m^4)(1/p^-1)#

Now, use these rules for exponents to simplify the #p# term:

#1/x^color(red)(a) = x^color(red)(-a)# and #a^color(red)(1) = a#

#-1/(2m^4)(1/p^color(red)(-1)) =>#

#-1/(2m^4)(p^color(red)(- -1)) =>#

#-1/(2m^4)(p^color(red)(1)) =>#

#-1/(2m^4)(p) =>#

#-p/(2m^4)#