How do you simplify #\frac { p ^ { 2} + 2p - 24} { p ^ { 2} + 5p - 6}#?

1 Answer
May 4, 2017

#(p^2+2p-24)/(p^2+5p-6) = (p-4)/(p-1) = 1-3/(p-1)#

with exclusion #p != -6#

Explanation:

Note that: #6*4=24# and #6-4=2#

Also: #6*1=6# and #6-1=5#

Hence we find:

#(p^2+2p-24)/(p^2+5p-6) = (color(red)(cancel(color(black)((p+6))))(p-4))/(color(red)(cancel(color(black)((p+6))))(p-1)) = (p-4)/(p-1) = (p-1-3)/(p-1) = 1-3/(p-1)#

with exclusion #p != -6#