How do you simplify #\frac { \root[ 3] { x ^ { 2} y ^ { 7} } } { \root [ 6] { x y ^ { 2} } }#?
3 Answers
Explanation:
Explanation:
Another approach is to put all the terms under the same root
Explanation:
Given:
#root(3)(x^2y^7)/root(6)(xy^2)#
Assume
Note that:
#root(3)(x^2y^7) = root(3)((y^2)^3)root(3)(x^2y) = y^2 root(3)(x^2y) = sgn(y)*y^2 root(6)(x^4 y^2)#
where:
#sgn(y) = { (1 " if " y > 0), (0 " if " y = 0), (-1 " if " y < 0) :}#
Then:
#root(3)(x^2y^7)/root(6)(xy^2) = (sgn(y)*y^2 root(6)(x^4 y^2))/root(6)(xy^2)#
#color(white)(root(3)(x^2y^7)/root(6)(xy^2)) = sgn(y)*y^2 root(6)((x^4 y^2)/(xy^2))#
#color(white)(root(3)(x^2y^7)/root(6)(xy^2)) = sgn(y)*y^2 root(6)(x^3)#
#color(white)(root(3)(x^2y^7)/root(6)(xy^2)) = sgn(y)*y^2 x^(3/6)#
#color(white)(root(3)(x^2y^7)/root(6)(xy^2)) = sgn(y)*y^2sqrt(x)#