How do you simplify #(\frac { x ^ { 10} y ^ { 0} } { x ^ { 3} y ^ { - 3} } ) ^ { 2}#?

1 Answer
Jun 12, 2017

#((x^(10)y^(0))/(x^(3)y^(-3)))^2=color(blue)(x^14y^6#

Explanation:

Simplify:

#((x^(10)y^(0))/(x^(3)y^(-3)))^2#

Apply the zero exponent rule: #a^0=1#.

#((x^(10)1)/(x^(3)y^(-3)))^2#

Simplify.

#((x^(10))/(x^(3)y^(-3)))^2#

Apply the power exponent rule: #(a^m)^n=a^(m*n)#.

#(x^(10*2))/(x^(3*2)y^(-3*2))#

Simplify.

#(x^20)/(x^(6)y^(-6))#

Apply the quotient exponent rule: #a^m/a^n=a^(m-n)#.

#(x^(20-6))/(y^(-6))#

Simplify.

#(x^14)/(y^(-6))#

Apply the negative exponent rule: #a^(-m)=1/(a^m)#.

#(x^14)/(1/y^6)#

Invert and multiply.

#x^14xxy^6/1#

Simplify.

#x^14y^6#