How do you simplify #\frac { x ^ { 2} - x - 6} { x ^ { 2} + 2x } \cdot \frac { x ^ { 3} + x ^ { 2} } { x ^ { 2} - 2x - 3}#?

1 Answer
Oct 21, 2016

The expression simplifies to #x#.

Explanation:

#frac{x^2-x-6}{x^2-2x} * frac{x^3+x^2}{x^2-2x-3}#

Factor each numerator and denominator.

#frac{(x-3)(x+2)}{x(x+2)}*frac{x^2(x+1)}{(x-3)(x+1)}#

Cancel any factors that are the same in numerator and denominator.

#frac{color(red)(cancel((x-3)))color(blue)(cancel((x+2)))}{xcolor(blue)(cancel((x+2)))}*frac{x^2cancel((x+1))}{color(red)(cancel((x-3)))cancel((x+1))}#

#x^2/xcolor(white)(aaa)#Use the exponent rule #x^a/x^b=x^(a-b)#

#x#