How do you simplify #(\frac { x ^ { 7} y ^ { 5} } { x y ^ { 5} } ) ^ { 2} #?

2 Answers
Aug 13, 2017

#((x^7y^5)/(xy^5))^2=x^12#

Explanation:

#((x^7y^5)/(xy^5))^2#

#color(white)("XXX")=((x^7)/(x) * (y^5)/(y^5))^2#

#color(white)("XXX")=(x^6 * 1)^2#

#color(white)("XXX")=(x^6)^2#

#color(white)("XXX")=x^12#

Aug 13, 2017

See a solution process below:

Explanation:

First, use this rule of exponents to rewrite the expression and cancel common terms:

#a = a^color(blue)(1)#

#((x^7y^5)/(xy^5))^2 => ((x^7y^5)/(x^color(blue)(1)y^5))^2 => ((x^7color(red)(cancel(color(black)(y^5))))/(x^color(blue)(1)color(red)(cancel(color(black)(y^5)))))^2 => (x^7/x^color(blue)(1))^2#

Next, use this rule of exponents to simplify the term within the parenthesis:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#(x^color(red)(7)/x^color(blue)(1))^2 => (x^(color(red)(7)-color(blue)(1)))^2 => (x^6)^2#

Now, use this rule of exponents to complete the simplification:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(x^color(red)(6))^color(blue)(2) => x^(color(red)(6) xx color(blue)(2)) => x^12#