How do you simplify #root3(54x)-root3(2x^4)#?

1 Answer
Sep 1, 2016

Answer:

#(3-x)root(3)(2x)#

Explanation:

you can substitute 54 by the product of its factors #2*3^3# and have the equivalent expression:

#root(3)(2*3^3x)-root(3)(2x^3*x)#

you can partially simplify:

#root(3)(2x)*(root(3)(3^3))-root(3)(2x)*root(3)(x^3)#

#3root(3)(2x)-xroot(3)(2x)#

#(3-x)root(3)(2x)#