How do you simplify #root3(8x^4) +root3(xy^6)#?

2 Answers
Aug 30, 2016

Answer:

#x^(1/3)# [2x+# y^2#]

Explanation:

#8^(1/3) x^(4/3)# +#x^(1/3) y^(6/3)#
= 2#x^(4/3) + x^(1/3) y^2#
=#x^(1/3)#[2x + #y^2#]

Aug 30, 2016

Answer:

#root(3)(x) (2x+y^2)#

Explanation:

Look for cubed values within the root that you can take outside the root.

Write as:#" "root(3)(2^3x^3x) + root(3)(xy^3y^3)#

#2xroot(3)(x)+y^2root(3)(x)#

#root(3)(x) (2x+y^2)#