How do you simplify #root5(12)/(4root5(-4))#?

2 Answers
Apr 15, 2017

Answer:

#(root5(12))/(4root5(-4))=color(red)(-root5(3)/4)#

Explanation:

#root5(12)/(4root5(-4)#

#color(white)("XXX")=(root5(3) * cancel(root5(4)))/(4 * root5(-1) * cancel(root5(4)))#

#color(white)("XXX")=root5(3)/(4 * (-1))#

#color(white)("XXX")=-root5(3)/4#

Apr 15, 2017

Answer:

#color(red)(=-root5(3)/4# or #color(red)(=-0.311432734#

Explanation:

#root5(12)/(4root5(-4)#

#:.=(root5(3) * cancelroot5(4)^color(red)1)/(4 * cancelroot5(4)^color(red)1* root5(-1) )#

#:.=root5(3)/(4 * (-1))#

#:.color(red)(=-root5(3)/4#

#:.color(red)(=-0.311432734#

Alternative method:

#:.=12^(1/5)/(4*(-4)^(1/5))#

#:.=12^0.2/(4*(-4)^0.2)#

using the calculator:

#:.=1.64375183/(4*-1.319507911)#

#:.=1.64375183/(-5.278031644)#

#:.color(red)(=-0.311432734#