How do you simplify #secx/tanx#?

2 Answers
Nov 13, 2016

#cscx#

Explanation:

Use #tanx=sinx/cosx#

And #secx=1/cosx#

So,#secx/tanx=1/cosx*cosx/sinx=1/sinx=cscx#

Jun 20, 2018

#secx/tanx=cscx#

Explanation:

Let's use the definitions of #secx# and #tanx# to simplify this. We know

#secx=1/cosx# and #tanx=sinx/cosx#. Let's plug these values into our original expression. we get

#(1/cosx)/(sinx/cosx)=(1/cancel(cosx))/(sinx/cancel(cosx))=>1/sinx=>cscx#

Therefore, #secx/tanx=cscx#

Hope this helps!