How do you simplify #(sin^2(t)+cos^2(t) )/ cos^2(t)#?
1 Answer
Jun 23, 2016
Explanation:
Divide each term on the numerator by
#cos^2t#
#rArr(sin^2t)/cos^2t+(cos^2t)/cos^2t=tan^2t+1........ (A)# From the identity
#color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2t+cos^2t=1)color(white)(a/a)|)))#
divide each term by#cos^2t#
#(sin^2t)/cos^2t+(cos^2t)/cos^2t=1/cos^2t# we obtain the identity.
#color(red)(|bar(ul(color(white)(a/a)color(black)(tan^2t+1=sec^2t)color(white)(a/a)|)))#
Substitute this result into the right side of (A)
#rArr(sin^2t+cos^2t)/cos^2t=sec^2t#