How do you simplify #sin theta cos ^2 theta - sin theta#?

1 Answer
Jun 27, 2016

#-sin^2(theta)#

Explanation:

Remember that
#color(white)("XXX")sin^2(theta)+cos^2(theta)=1#
or (in a modified form)
#color(white)("XXX")color(blue)(cos^2(theta)-1=-sin^2(theta))#

Given the expression:
#color(white)("XXX")sin(theta)cos^2(theta)-sin(theta)#
we can factor this as
#color(white)("XXX")color(red)(sin(theta))*(color(blue)(cos^2(theta)-1))#

The using the earlier identity, we have
#color(white)("XXX")color(red)(sin(theta))*(color(blue)(-sin(theta)))#
or
#color(white)("XXX")-sin^2(theta)#