How do you simplify #sqrt(1+tan^2x)#?

1 Answer
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

Answer

Write a one sentence answer...

Answer:

Explanation

Explain in detail...

Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

25
Jan 13, 2017

Answer:

#sqrt(1+tan^2 x) = abs(sec x)#

Explanation:

Using:

#cos^2 x + sin^2 x = 1#

#tan x = sin x / cos x#

#sec x = 1/cos x#

we find:

#sqrt(1+tan^2 x) = sqrt(1+(sin^2 x)/(cos^2 x))#

#color(white)(sqrt(1+tan^2 x)) = sqrt((cos^2 x)/(cos^2 x)+(sin^2 x)/(cos^2 x))#

#color(white)(sqrt(1+tan^2 x)) = sqrt((cos^2 x+sin^2 x)/(cos^2 x))#

#color(white)(sqrt(1+tan^2 x)) = sqrt(1/(cos^2 x))#

#color(white)(sqrt(1+tan^2 x)) = sqrt(sec^2 x)#

#color(white)(sqrt(1+tan^2 x)) = abs(sec x)#

Was this helpful? Let the contributor know!
1500
Impact of this question
10830 views around the world
You can reuse this answer
Creative Commons License