How do you simplify #\sqrt { 121a ^ { 6} b ^ { 4} c ^ { 32} }#?

1 Answer
May 12, 2017

See a solution process below:

Explanation:

First, rewrite this expression as:

#sqrt(11^2a^6b^4c^32) => (11^2a^6b^4c^32)^(1/2)#

Next, use this rule of exponents to simplify this expression:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(11^color(red)(2)a^color(red)(6)b^color(red)(4)c^color(red)(32))^color(blue)(1/2) = 11^(color(red)(2) xx color(blue)(1/2))a^(color(red)(6) xx color(blue)(1/2))b^(color(red)(4) xx color(blue)(1/2))c^(color(red)(32) xx color(blue)(1/2)) =#

#11^1a^3b^2c^16#

Now, use this rule of exponents to complete the simplification:

#a^color(red)(1) = a#

#11^color(red)(1)a^3b^2c^16 = 11a^3b^2c^16#