How do you simplify #sqrt(-15)( sqrt(-4 -sqrt7))#?
1 Answer
Explanation:
By definition and convention, the principal square root of a negative real number
#sqrt(x) = isqrt(-x)#
where
If
#sqrt(ab) = sqrt(a)sqrt(b)#
As a first step in attempting to simplify the given expression, let's try to find a simpler expression for:
#sqrt(4+sqrt(7))#
This may be expressible in the form
#(a+bsqrt(7))^2 = (a^2+7b^2)+2ab sqrt(7)#
So we would like
Notice that if
So we can use
#sqrt(4+sqrt(7)) = sqrt(2)/2 + (sqrt(2)sqrt(7))/2 = sqrt(2)/2+sqrt(14)/2#
From our previous remarks:
#sqrt(-4-sqrt(7)) = isqrt(4+sqrt(7)) = i(sqrt(2)/2+sqrt(14)/2)#
Then:
#sqrt(-15)sqrt(-4-sqrt(7)) = isqrt(15)*i(sqrt(2)/2+sqrt(14)/2)#
#color(white)(sqrt(-15)sqrt(-4-sqrt(7))) = -sqrt(15)(sqrt(2)/2+sqrt(14)/2)#
#color(white)(sqrt(-15)sqrt(-4-sqrt(7))) = -sqrt(30)/2-sqrt(210)/2#