How do you simplify #sqrt (2 / 25) + sqrt (8 / 9)#?

2 Answers
Apr 29, 2018

Answer:

#sqrt2/5 + (2sqrt2)/3#

Explanation:

#sqrt(2/25) + sqrt(8/9)#

Simplify the denominators:
#sqrt2/5 + sqrt8/3#

Simplify #sqrt8#:
#sqrt2/5 + sqrt(4 * 2)/3#

#sqrt2/5 + (sqrt4 * sqrt2)/3#

#sqrt2/5 + (2sqrt2)/3#

Hope this helps!

Apr 30, 2018

Answer:

#color(blue)((13sqrt(2))/15)#

Explanation:

#sqrt(2/25)=sqrt(2)/5#

#sqrt(8/9)=sqrt(8)/3#

#sqrt(8)=2sqrt(2)#

#:.#

#sqrt(2)/5+(2sqrt(2))/3#

Add:

#(3sqrt(2)+10sqrt(2))/15=(13sqrt(2))/15#