How do you simplify #sqrt(20x^2)*sqrt(20x)#?

2 Answers
Sep 3, 2016

Answer:

#20xsqrt(x)#

Explanation:

As an example of concept consider
#sqrt(2)xxsqrt(2) = sqrt(2xx2)=sqrt(2^2)=2#

'...........................................................................................

Now apply this concept to the question.

#sqrt(20x^2)xxsqrt(20x) = sqrt(20^2xx x^2xx x) = 20xsqrt(x)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you are ever not sure how something behaves then try it with simple values to see what happens. Then apply your understanding of the process.

Sep 4, 2016

Answer:

#20 x^((3) / (2))#

Explanation:

We have: #sqrt(20 x^(2)) cdot sqrt(20 x)#

#= sqrt(20) cdot sqrt(x^(2)) cdot sqrt(20) cdot sqrt(x)#

#= 20 cdot x cdot sqrt(x)#

#= 20 cdot x^(1+(1) / (2))#

#= 20 cdot x^((3) / (2))#

#= 20 x^((3) / (2))#