How do you simplify #sqrt(2a^2b) times sqrt(4a^2)#?

1 Answer
Jul 15, 2016

Answer:

#sqrt(2a^2 b) xx sqrt(4a^2)=2a^2 sqrt(2b)#

Explanation:

Square Roots distribute across multiplication, that is to say:
#sqrt(ab) = sqrt(a)xxsqrt(b)#

Knowing this, it's easy to see where we can simplify the given equation:
#sqrt(2a^2 b) xx sqrt(4a^2)#
#= sqrt(a^2)xxsqrt(2b) xx sqrt(4)xxsqrt(a^2)#
#= axxsqrt(2b)xx2xxa#
#=2a^2 sqrt(2b)#