How do you simplify #sqrt(30)/(sqrt(2)*sqrt(5)#?

2 Answers
Jun 6, 2018

Answer:

#[sqrt(30)/[(sqrt(2)*sqrt(5))]]=sqrt30/sqrt10=sqrt(30/10)=sqrt3#

Explanation:

Note that:

#color(red)[sqrta/sqrtb=sqrt(a/b)]#

#color(red)[sqrta*sqrtb=sqrt(a*b)]#

#[sqrt(30)/[(sqrt(2)*sqrt(5))]]=sqrt30/sqrt10=sqrt(30/10)=sqrt3#

Jun 6, 2018

Answer:

#sqrt30/(sqrt2*sqrt5) = sqrt30/sqrt(2*5)=sqrt(30/10)=sqrt3#

Explanation:

#sqrt30/(sqrt2*sqrt5) = sqrt30/sqrt(2*5)=sqrt(30/10)=sqrt3#