How do you simplify #sqrt(8x^5) * sqrt(3x)#?

1 Answer
Apr 7, 2015

First you try to get the squares out of the root.

I'll do it step by step:

#sqrt(8x^5)*sqrt(3x)=sqrt(2^2*2*(x^2)^2*x)*sqrt(3x)=#

#2x^2sqrt(2x)*sqrt(3x)=2x^2sqrt(2x*3x)=2x^2sqrt(6*x^2)=#

#2x^2*x*sqrt6=2x^3sqrt6#

OR :

#sqrt(8x^5)*sqrt(3x)=sqrt(8x^5*3x)=#

#sqrt(24x^6)=sqrt(2^2*6*(x^3)^2)=2x^3sqrt6#