How do you simplify #sqrt12*sqrt30#?

2 Answers
May 1, 2018

Answer:

#6sqrt10#

Explanation:

#sqrt12*sqrt30=sqrt(4*3)*sqrt(3*10)=sqrt4*sqrt3*sqrt3*sqrt10=2*3*sqrt10=6sqrt10#

Answer:

exact form: #6sqrt10#

decimal form:#18.97366596…#

Explanation:

Combine using the product rule for radicals.
#sqrt12 *sqrt30 =sqrt(12⋅30)#

Factor #36# out of #360#

#=sqrt(36(10))#

Rewrite #36# as #6^2#
Pull the factor out from under the radical.

exact form: #=6sqrt10#

decimal form:#18.97366596…#