How do you simplify #sqrt1800/sqrt60#?

2 Answers
May 17, 2018

Answer:

#sqrt1800/sqrt60=sqrt30#

Explanation:

show below

#sqrt1800/sqrt60=[sqrt(100*18)]/[sqrt(4*15)]#

#[10sqrt18]/[2sqrt15]=[10sqrt(9*2)]/[2sqrt15]=[30sqrt2]/[2sqrt15]=[15sqrt2]/[sqrt15]=sqrt15*sqrt2=sqrt30#

note that

#sqrt15*sqrt15=15#

May 17, 2018

Answer:

See a solution process below:

Explanation:

We can use this rule for radicals to combine the radicals:

#sqrt(color(red)(a))/sqrt(color(blue)(b)) = sqrt(color(red)(a)/color(blue)(b))#

#sqrt(color(red)(1800))/sqrt(color(blue)(60)) => sqrt(color(red)(1800)/color(blue)(60)) => sqrt(30)#

Or

#sqrt(30) ~= 5.477#