How do you simplify #sqrt21*sqrt24#?

2 Answers
May 6, 2018

Answer:

#\sqrt(21)*\sqrt(24)=6*\sqrt(14)#

Explanation:

#\sqrt(21)*\sqrt(24)=#
#=\sqrt(21*24)=\sqrt(3*7*3*8)=\sqrt(3^2*7*2*2^2)=#
#=3*2*\sqrt(2*7)=6*\sqrt(14)#

May 6, 2018

Answer:

#6sqrt14#

Explanation:

#"using the "color(blue)"law of radicals"#

#•color(white)(x)sqrtaxxsqrtbhArrsqrt(ab)#

#"simplifying "sqrt24=sqrt(4xx6)=sqrt4xxsqrt6=2sqrt6#

#rArrsqrt21xx2sqrt6=2sqrt126#

#=2sqrt(9xx14)=2(sqrt9xxsqrt14)=2(3sqrt14)=6sqrt14#