How do you simplify #-sqrt6(2sqrt6-4sqrt2)#?

2 Answers
Jun 14, 2018

Answer:

#-12+8sqrt3#

Explanation:

We can distribute the #-sqrt6# to both terms on the parenthesis. Doing this, we get

#-2sqrt(6*6)+4sqrt(2*6)#

This simplifies to

#-2sqrt36+color(blue)(4sqrt(12))#

Which can be rewritten as

#-12+color(blue)(4*sqrt(4*3))#

#=>-12+color(blue)(4*2sqrt3)#

Which finally simplifies to

#-12+8sqrt3#

Hope this helps!

Jun 14, 2018

expand the bracket

#-2sqrt36+4sqrt12#

#sqrt36=6# and #sqrt12=2sqrt3#

#-12+8sqrt3#