How do you simplify #sqrt7/(sqrt11+3)#?

1 Answer
Mar 15, 2016

Answer:

#(sqrt7)/(sqrt11+3)=(sqrt77-3sqrt7)/(2)#

Explanation:

#(sqrt7)/(sqrt11+3)=(sqrt7*(sqrt11-3))/((sqrt11+3)(sqrt11-3))#

#color(red)((a-b)(a+b)=a^2-b^2)#

#(sqrt7)/(sqrt11+3)=((sqrt7)*(sqrt11-3))/((sqrt11)^2-3^2)#

#(sqrt7)/(sqrt11+3)=((sqrt7)*(sqrt11-3))/(11-9)#

#(sqrt7)/(sqrt11+3)=((sqrt7)*(sqrt11-3))/(2)#

#(sqrt7)/(sqrt11+3)=(sqrt77-3sqrt7)/(2)#