How do you simplify #sqrt72-sqrt147 -sqrt5 -sqrt 8+3sqrt48#?

1 Answer
May 25, 2016

Answer:

#4sqrt2 + 5sqrt3 - sqrt5#

Explanation:

simplify terms:
#sqrt72 = sqrt(36xx2) = sqrt36 xx sqrt2 =6sqrt2#
#sqrt147 = sqrt(49xx3) = sqrt49 xx sqrt3 = 7sqrt3#
#3sqrt48 = 3 xx sqrt(16 xx 3) = 3 xx sqrt16 xx sqrt3 = 3 xx 4 sqrt3 = 12 sqrt3#
#sqrt8 = sqrt(4 xx 2) = sqrt4 xx sqrt2 = 2sqrt2#
add like terms:
#6sqrt2 - 2sqrt2 = 4sqrt2#
#-7sqrt3 + 12 sqrt3 = 5sqrt3#
combine:
#4sqrt2 + 5sqrt3 - sqrt5#