How do you simplify # sqrt75+sqrt48#?

4 Answers
Aug 12, 2018

Answer:

#9sqrt3#

Explanation:

#sqrt75=sqrt(25times3)=sqrt25timessqrt3=5sqrt3#

#sqrt48=sqrt(16times3)=sqrt16timessqrt3=4sqrt3#

#sqrt75+sqrt48=5sqrt3+4sqrt3=9sqrt3#

Aug 12, 2018

Answer:

#9sqrt3#

Explanation:

#sqrt75+sqrt 48#

#:.=sqrt(5*5*3)+sqrt(2*2*2*2*3)#

#:.sqrt2*sqrt2=2#

#:.sqrt5*sqrt 5=5#

#:.=5sqrt3+4 sqrt 3#

#:.=9sqrt3#

Aug 12, 2018

Answer:

#9sqrt3#

Explanation:

#sqrt75+sqrt48#

=#sqrt(5^2*3)+sqrt(4^2*3)#

=#5sqrt3+4sqrt3#

=#9sqrt3#

Aug 12, 2018

Answer:

#9 sqrt 3#

Explanation:

#sqrt75 + sqrt48#

#=> sqrt3 * sqrt 25 + sqrt 3 * sqrt16#

#=> sqrt3 * (sqrt 25 + sqrt 16)#

#=>sqrt3 * (sqrt(5^2) + sqrt(4^2))#

#=> sqrt 3 * (5 + 4)#

#=> 9 sqrt3#