How do you simplify #(sqrta- sqrtb)/(sqrta+sqrtb)#?
3 Answers
See a solution process below:
Explanation:
To simplify we need to rationalize the denominator by multiplying by the appropriate form of
Multiply both the numerator and denominator by
Hope this helps :)
Explanation:
#"multiply the numerator/denominator by the "color(blue)"conjugate"#
#"of the denominator"#
#"the conjugate of "sqrta+sqrtb" is "sqrtacolor(red)(-)sqrtb#
#•color(white)(x)sqrtaxxsqrta=a#
#•color(white)(x)(sqrta+sqrtb)(sqrta-sqrtb)=a-b#
#rArr(sqrta-sqrtb)/(sqrta+sqrtb)xx(sqrta-sqrtb)/(sqrta-sqrtb)#
#=((sqrta-sqrtb)(sqrta-sqrtb))/((sqrta+sqrtb)(sqrta-sqrtb))#
#=(a-sqrtab-sqrtab+b)/(a-b)#
#=(a-2sqrt(ab)+b)/(a-b)#