How do you simplify the expression #(cos^2t-1)/(sin^2t-1)#?
1 Answer
Aug 28, 2016
Explanation:
Using the
#color(blue)"trigonometric identity"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2t+cos^2t=1)color(white)(a/a)|)))#
#rArrsin^2t=1-cos^2trArrcos^2t-1=-sin^2t# and
#cos^2t=1-sin^2trArrsin^2t-1=-cos^2t#
#rArr(cos^2t-1)/(sin^2t-1)=(-sin^2t)/(-cos^2t)=tan^2t#